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Abstract

This final report summarizes research for a one-year project.

Abstracts for the two scicntific reports are given, and some new

results arE included on reduction of context-free grammars, decoding

binary block codes on Q-ary output channels, a procedure for decoding

binary product codes, on the minimum weight code words of a certain

class of cyclic codes, distance property of the dual codes of polynomial

codes and on shortened Reed-Muller codes.



Part One

Summary of Project Research

The purpose of this proje.t is to attain a better understanding of

important error-correcting codes and the mathematical theory of languages

through research on such topics as

a) Further algebraic properties of polynomial codes.

b) Majority-logic decoding for the dual of polynomial codes.

c) Weight structure of Reed-"_ler codes and their related codes.

d) Construction of good convolutional codes for random error

correction.

e) Reduction of context-free grammars.

f) Finite automata.

The research on the project over the past year has been reported

in two scientific reports, this final report, and three journal papers

and two conference presentations. One report deals with majority-logic

decoding for the duals of primitive polynomial codes, one with the

construction of a class of majority-logic decodable codes. Th, reports

and their abstracts are listed in Appendix A, and papers are listed in

Appendix B. This report includes the following new material un research:

Part Two: Reduction of Context-Free Grammars

Part Three: On Decoding Binary Block Codes on Q-ary Output

Channels

Part Four: A Procedure for Decoding Binary Product Codes

Part Five: On the Minimum Weight Code Words of a Certain Class of

Cyclic Codes

Part Six: An Upper Bound on the Minimum Distance of the Dual rodes

of Polynomial Codes

Part Seven: On Shortened Reed-Muller Codes.
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Part Two

Reduction of Context-Free Grammars

by

T. Kasami

The following problem has been studied. Given a context-free

grammar G, find a context-free grammar with a desirable property dmong

those grammars which are similar to G in structure.

For simplicity, context-free grammar G is assumed to be reduced

[1] and to have no E-rule and cyclic rules. Let x = A ... An  be

a sentence of L(G), the context-free language generated by G, and let

d denote a derivation tree for x. By phrase [A. ... A.] of d, we mean

a phrase which covers subsequence Ai.. .A. exactly. There might be two

or more phrases in d which cover Ai.. .A. exactly.

We introduce a notion that a context-free grammar G2 structurally

approximates another context-free grammar G . By G2-h*Gl, we mean that

a) Gl and G2 generate the same language, i.e., L(GI) = L(G2)

b) For any derivation tree dI of a sentence x = A1 ...An  in

Gl, there is a derivation tree d2 of x in G2 such that for any

phrase 'Ai...A.] of dI, here is a sequence of phroes [A.l"'A.

(A. ."Ai3]' ' . , [A i .
' A ] in d2 with 1 < k < h and

12* 13-1

By definition, if G2 is unambiguous, then G2 -- G1  implies that

G and G2 are structurally equivalent [2,3,4], and if G1 and G2 are
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structurally equivalent, then GI--, G2  and G G1 .
The nation

of structural equivalence is too restricted for some practical appli-

cations. Without affecting the generating power of a grammar, a pro-

duction rule may be replaced by some separate rules, or some rules

are combined into a single rule. However, these elementary trans-

formations do not preserve structural equivalence. On the other hand,

if G. is derived from G1 by a set of the elementary transformations

hstated above, then G2--,hG1 for some h [4].

Theorem 1: Given h, G and G2, it is decidable whether G2- h G1

This theorem is proved by modifying the procedure for deciding

"k-structural-equivalence" described in [4].

A context-free grammar G with no two rules having the same right

side is called a backwards-deterministic grammar [2].* Two nonterminal

symbols X and Y of a backward-determiristic grammar G are equivalent

if the grammar derived from G by replacing X and Y by a single new

nonterminal symbol is backwards-deterministic and structurally equi-

valent nonte-minal symbols is said to be reduced. A procedure for
transforming a given grammar G into a reduced backwards-deterministic

grammar structurally equivalent to G is known [2,5]. Two reduced

backwards-deterministic grammars are structurally equivalent if and

only if they are isomorphic to each other [2].

Theorem 2: Let P be a property of context-free gramnars which is

preserved by the transformation to a reduced backwards-deterministic

grammar.**Then, given G and h, it is decidable whether there is

G' with property P such that G-- G

This theorem is proved by presenting a procedure for finding G'

if any. The procedure is a generalization of the one d.scribed in [5].

Corollary 1: Given G, k, and h, it is decidable whether there

exists LR(k) grammar G' such that G'-h G

* Two or more initial symbols are admitted.

** We assume that it is decidablL whether a context-free grammar has
property P.

-3-



[{
A procedure for finding such G if any has been devised. Also,

the procedure described in [5] can be generalized to one for finding

, grammar with the minimum number of nonterminal symbols or production

rules among those grammars which h-approximate a given grammar in

structure for given h.
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Part Three

Decoding Binary Block Codes on Q-ary Output Channels*

by

E. J. Weldon, Jr.

1. Introduction

In many communication systems the demodulator must make a "hard"

binary decision after examining the received waveform. This hard

decision causes a loss in channel capacity and, more importantly, a

reduction in the error exponent at all rates below capacity. However,

in systems using coding to improve reliability, decoding is considerably

simpler if the decoder processes only binary digits. In practical

situations this can more than compensate for the increased probability of

error.

This paper presents a technique for decoding binary block codes in

situations w.iere the demodulator quantizes the received signal space

into Q - 2 regions. The method, referred to as Weighted Erasure Decoding,

is applicable in principle to any block code for which a binary decoding

procedure is known.

In section 1 of this paper, Weighted Erasure Decoding is introduc-d.

In section 2 two practical methods of implementing this decoding procedure

are described. In section 3 we examine the performance of the (23, 12)

Golay code used on the additive white Gaussian noise channel and decoded with

Weigrted Erasure Decoding for various values of Q. "t is shown, as expected,

that even small values of Q yield substantial improvements over strictly

binary decoding.

It is interesting to observc that all three of the practical dectding

procedures for convolutional codes -- sequential decoding, threshold

This part was supported in part by NASA grant NGL-12-004-G46
and by AFCRL contract F19623-70-C-0082.

-6-



decoding and Viterbi decoding -- are readily adapted to Q-ary output

channels. Because of its simplicity, Weighted Erasure Decoding may permit

block codes to be competitive with convolutional codes on sone soft-quantized

channels.

2. Code Structure

Assume that a binary (n,k) code with minimum Hamming distance d is

used on a memoryless channel whose output can assume any one of Q

possible values. We wish to devise a procedure frr decoding this code

which will take into account the probabilities of the different output

symbols.

Ccnsider the memoryless channel whose transition diagram is shown

in Figure 1. The Q levels are ordered according to their likelihood

ratios; that is

Pr(O/Li) Pr(O/Li+l)

Pr(I/L i) Pr(l/L i+l)

for i -O,, ..., Q-

We will associate with each of the channel transitions a positive

real number called the w-weight as foliows:
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Transitions w-wiqh

1 LQ1l ,0 -LO

1 -LQ- 2 ,0 -LI 1

1 L1  , O-LQ-2  WQ2

1 LO 0 - LQ1l wq 1

LQ 1 = IPr(L 0-1/1)=1

PPr(L 1/1)

L0 = 0 =0)

Pr( /0)0/0

Figure 1. Transition diagrm. of a memoryless
channel with two inputs and Q outputs.
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To permit maximum likelihood decoding with equiprobable inputs, it

is necessary to choose the weights wi to be proportional to

-log Pr(L i 1 0) (1)

However, in the decoding procedure presented in this paper certain

constraints are necessarily placed on the wi. First of all, it is necessary

to choose wo= 0 . Secondly, for notational convenience we choose WQ 1

These constraints and Eq. (1) then "jgest the restriction that

0 = wO<w I ... E WQ.2 wQ =1 (2)

The final restriction, necessary for Weighted Erasure Decoding, is

wi + WQl-i = 1 (3)

This last restriction may preclude choosing the wi according to Eq. 2.

Because of these restrictions, Weighted Erasure Decoding will always be

inferior to maximum likelihood decoding, although perhaps not significantly

so. In order to minimize the magnitude of the resulting degradation, it

seems desirable to choose the wi to be close to the values given by Eq. 2.

We now define the w-distance between two levels as follows.

dw(,L O) = dw(Lo,L i) = wi  (4a)

dw(Li'LQ-l) = dw(LQ.l'Li) =WQl-i (4b)
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for all i. The other distances, dw (Lj,Li), j O or Q-l, are unimportant

in this paper; however for completeness we can define

d w(Li,Lj) = 1wi - wjI (4c)

Now Eqs. 4b and 4c can be combined to give Eq. 3, explaining in part the

need for this constraint. As defined, w-distance is a true metric,

satisfying, symmetry, reflexivity, and the triangle inequality. In fact,

for all i,

dw(LOLQ_I) = dw(LoLi) + d,,(LiLQ_I) (5)

The w-weight of the error in the oth transmitted digit, 0 < v i n-l,

will be denoted e . The following theorem characterizes the error-correcting

capability of binary codes on this channel:

Theorem 1: A binary (n,k) code with minimum Hamming distance d can

correct any error pattern such that

n-l
. ev  = E < d/2

v=0

Proof: The w-uistance between code words is at least d, the minimum

Hamming distance of the code. If an error pattern of w-weight E < d/2

occurs, the received vector is w-distance E from the transmitted code word.

Now assume that another c~de word is w-distance E'< E from the received
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word. By Eq. 5 this would imply that the distance between this code word

and the transmitted one is E + E' < d. But this is impossible, so there

exists no cod, word closer to the received vector than the transmitted

word, and the theorem is proved.

Let Ni denote the number of error digits of weight wi.

Corollary Any error pattern is correctable provided

Q- 1
ZI Niwi < d/2 (7)

Example. For Q=3, the three outputs of the channel can be taken as

1, 0 and erasure. In this case the only possible choice for the wi,

subject to the constraints of Equations 2 and 3, are wo=O. wl=.5,

and w2=l . Then

n-I
e = 2N2 + N < d

V-O

This is the well-known result for the binary symmetric erar-re

channel. It is interesting to note that for all larger values of

Q, the constraints of Eqs. 2 and 3 do not completely specify the wi.

Forneyll] has proved Theorem 1 and its corollary in a more general form;

in particular, the constraint of Eq. 3 is not employed in his proof. We

use the constraint here because it is necessary in the sequel and results

in a somewhat simpler theorem and proof.
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Error correction procedures which employ the w-distance metric are

referred to in this paper as Weighted Erasure Decoding. In the next

section vie present two practical methods of implementing Weighted

Erasure Decoding which permit the correction of all error pattern: of

w-weight less than d/2 and many of higher weight.

3. Inplementation

For any choice of the wi it is possible to find a set of r < (Q+l)/2

positive real numbers vl, v2, ... , vr such that for all i

wi = Ari vr + A(r-l)i Vr-l + A l v1  (8)

and such that

r
v = WQ1l =

a= 1

The A's are binary digits.

For the v th digit ( the received vector the demodulator output

will consist of r binary digits a r, a(rl)v, ... , alv and the

received word can be represented as an r x n array of binary digits as

shown in Figure 2. Since this array must be stored by the decoder, for

a given value of Q it is advantageous to choose r to be as small as

possible.

3.1. In the General Case

Given that a binary decoding technique capable of correcting all error

patterns of Hamming weight less than d/2 and perhaps others is available,

decoding for the Q-ary channel can be accomplished as follows. Decode each

of the rows of Figure 2 using the decoder for the binary code. For the
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oth ro.: record F., the number of changes made in this row. The quantity

F is related to the number of bit errors in the a th row, E. as follows:

Fa = Ea ; E < d

Cr a 2 (10)

FU = Ea ; (correct decoding) E0  d

E0 .> Fo  > d-E ; (incorrect decoding) E > d

Note that the total w-weight of the error pattern is

n-l r
E= I e.= I v0E a (11)

v-0 G=1

Relative

Weight

ar(n-1) ar(n-2) aro r

a

a(r _) (n-1} a (r-) (n-2) a , (r- )0 Yr, 1

Ial(n-1) la,(n-2) ...I aO 0

Figure 2. Representation of a received word.
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Now following Reddy[lO] we assign to each row a Reliability Indicator

% = d - 2Fa (12)

Consider the tentatively detoded digits of the first column of the

array of Figure 2. Certain of these digits are l's, the others are

O's. Let SI and S0 denote the index set of the rows corresponding

to l's and O's, respectively, in the first column of the tentatively

decoded array.

The decoding rule can now be stated. Choose the first information

digit to be a 0 if

I Rv > Ra v (13)
So

Otherwise choose this digit to be a 1. It must now be shown that this
rule guarantees the correction of all error patterns of w-weight

E < d/2
Assume a code word C is transmitted and denote the first bit of

this word as the binary digit c. Now in the absence of errors the

demodulator output r-tupl]i will consist of r c's, s4nce L0 corresponds

to the all-zero and LQ l to the all-ones r-tuple. (See Eqs. 8 and 9)

In this case

SRav0  - d

C

and

SR v 0
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where Z denotes the complement of the binary digit c.

If an error pattern of w-weight less than d/2 occurs, then

Rv Va(d - 2FO)
Sc Sc

> d I v - 2 1 vaE a  (14)
Sc Sc

Some rows are decoded incorrectly and result in the first bit being

Z. Thus

RV = va (d - 2Fa)

c c

d v. - 2 v(d EO )

c c

A -d v + 2 v y E (15)

Then Equ,.tons 14 and 15 give

r r
Rv o  

R V  - d I v.- 2 1 v E  (16)
Sc c Gal

From Eqs. 9 and 11 we have

SRava  a Rv d wQ1 - 2E (17)
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If the error pattern weight, E < (dWQ1 - )/2, then S R v S Rav- Sc - 0

and the decoder correcal, decodes the first informaft'n digit.

All other digits can be correctly decoded in a similar manner.

In situations where only a bounded distance decoder is available

for the binary code it is advantageous to define Ra - 0 if an error

pattern of Hamming weight d/2 or greater is detected in the a th row

by the binary decoder. It can be shown that all error patterns of

w-weight E < d/2 are also correctable with this modified Reliability

Indicator; since rows with R = 0 are ignored by the decoder, the proof

above can be carried through considering only rows with R > 0.

3.2. When the Code is Majority-Logic Decodable

For simplicity the binary (n,k) code wk.l be taken to be completely

orthogonalizable in one step. That is, we assume that it is possible to

construct e. actly d orthogonal estimates of any code digit. The extension

to L-step decodable codes is not difficult.

The decoder for a majority-logic decodable binary cyclic code used

on an Q-ary output channel is shown in Figure 3. Basically it consists

of r binary decoders and a single majority gate. The majority gate has

rd inputs; d have weight vr, d have weight vrl, ... , d have weight

v2 and d have weight v.

In Figure 3 each of the r Syndrome Registers is a circuit which

divides by g(X), the generator polynomial of the code. The inputs to
th

the o register are the n binary digits

ao(n-1 )' a(n-2 )' "" , aal %0 (18)

Similarly the th Information Register stores the k "information"

symbols

-16-



ao(n-l' aocn-2 )' -.. , k)

The n-tuple (18) is treated as a possibly erroneous word in the
(n,k) code. Its syndrome is calculated and the d orthogonal estimates
of a0(n-l) are formed. These are used as inputs to the majority gate

where each is weighted by the factor v . The r, binary adding circuits

which may be needed to form the inputs to the majority gate have been

omitted from Figure 3 to simplify the drawing.

Input
4Weights

d vr

Information and d -
Parity Symbols
ar n-k Majority
r 

Gate
ar
ar-l I

r Syndrome Registers 2

al d v,

Informati on
Symbols
a
r  

cor.....ar--

r Information Registersbina

a' digit
I- k

Figure 3. Block diagram representation of a majority
logic decoder for a Q-ary output channel.
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We now consider the error-correcting capability of the decoder of

Figure 3.

Theorem 2: An (n,k) code completely orthogonalizable in one-step

with minimum Hamming distance d used on a Q-ary output channel can

correct all error patterns of w-weight less than d/2 using a one-step

majority logic decoder. (Figure 3'

Proof: Assume that an error pattern of w-weight E less than d/2

occurs. Let c 09note the value of the first information bit. We wish to

show that the output of the majority gate gives the correct value of this

bit regardless of the location of the errors.

An error of magnitude e. in position v is represented as

ev = er V + e(r)V 1 + ... e1 vl (19)

where the e's are binary digits. Then

n-I n-i n-I,ev = v Joer + v , I oel,

v~~or rV4•VS V=0v r

= Ervr + Er-lr_1  + . + E 1  - E c d/2 (20)

where E is the numb}er of binary errors in the ath row of the array of

Figure 3.

Now consider this ath row. 6ecause the code is completely -irthogo-

nalizable it is possible to construct d orthogonal estimates of the first

bir of this word; these are also estimates of the first information bit.

At most E of these estimates will have value E; the others have value c.

-18-.



These are each weighted by the factor v0 by the majority gate. Summiing

on o gives an upper bound on the total number of incorrect , timates of

the first information digit:

r
E v = E

=l

But by hypotheses,

E < d/2

so strictly less than half of the weighted inputs to the majority gate

give value Z. Therefo,-e the value of this output is c anO the first

infomation symbol is decoded correctly. If d orthogonal estimates of

each information bit can be formed, as in a cyclic code, the entire

code word can be decoded correctly.

The above procedure is closely related to Massey's APP decodiig.[2]

It differs in that restriction [3] will cause some degradation in per-

formance; on the other hand the circuitry required to form the inputs to

the majority gate will be simpler. Also, this procedure extends in a

straightforward way to L-step decoding. After the first step all check

suns required in the second step will be correctly determined provided

that cecoding is performed as above and that the error pattern has weight

less than d/2. Subsequent steps can be identical to binary-output majority-

logic decoding.

4. Evaluation of Weighted Erasure Dedijn,

It does not seem to be possible to calculate the probability of

erroneous decoding for interesting codes. The alternative, simulation, is

being performed; unfortunately no results are available at this writing.

In order to give some idea of the capabilities of this decoding

-19-



procedure however, we present in Figure 4 performance curves for maximum

likelihood Weighted Erasure Decoding. The channel is the standard time-

discrete channel afflicted by zero-mean additive white Gaussian noise;

the equally likely antipodal signals have energy Es and the noise has

variance N0 /2. The code employed is the (23,12) Golay code and so the

energy per information bit, Eb, equals Fs (23/12).

The curves are all strict upper bounds on performance with the exception

of the Q=2 curve, which is exact. The Q=3, 4 and 8 curves are somewhat

crudely optimized on the weights w. and threshold settings. Interestingly

enough, nearly optimal performance is obtained in all cases with evenly

spaced thresholds and weights wi= i/(Q-l).

It can be shown that for long codes decoded with the procedures of

Section 2, the Q=3 curve is roughly 1.4 db better than the Q=2 curve, tne
Q-4 curve is 1,9 db better, the Q-8 curve is 2.6 db better, while correlation

decoding is 3.0 db better. Forney[ll] and Cahn[14] have obtained identical

rc.jlts for the cases of Q=3 and 4, respectively, using Generalized Minimum

Distance decoding, This indicates that Weighted Erasure Decoding is

asymptotically as good as maximum likelihood decoding.

For moderate signal-to-noise ratios, i.e., such that p - d/2 where

p is the binary symmetric channel crossover probability, Forney[ll] has

shown that Generalized Minimum Distance decoding offers no improvement

over binary decoding. Weighted Erasure Decoding corrects some error patterns

of w-wei;t greater than d/2 and so may in fact improve on binary decoding
in this range; it seems doubtful to the author that any such improvements

will be significant, however. This will be the first question answered by

our simulation.
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- vs. Signal-to-UAoise Ratio
for (23,12) Golay Code
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5. Summary and Conclusions

The decoding procedure described in this paper is applicable, in

principle, to any binary block code, Both of the two means of implementing

this procedure correct all error patterns guaranteed correctable by the

minimum distance of the code, as well as some patterns of higher weight.

It seems likely, however, that the fractions of these high weight patterns

which are correctable with these practically implenmkitable decoding tech-

niques are less than the fraction correctable with maximum-likelihood

Weighted Erasure Decoding.

Performance curves for the Golay code decoded with maximum-likelihood

Weighted Erasure Decoding have been presented; these show that as expected,

substantial improvements over hard-decision decoding are possible. The

efficacy of the two practical Weighted Erasure Decoding procedures has yet

to be demonstrated, however.
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Part Four

A Procedure for Decoding Binary Product Codes*

by

E. J. Weldon, Jr.

1. Introduction

Product (iterated) codes, despite their relatively poor random-

error-correcting capabilities, have been much studied. For one thing

the codes are structurally interesting, and this structure has suggested

several effective and easily implemented decoding procedures applicable

only to these codes.

These methods are summarized briefly below for a 2-dimensional

product code:

1) (Elias[l], Abramson[2]) The row code words are decoded inde-

pendently; then the column words are decoded. This process

can be repeated a number of times until no further corrections

are possible.

2) (Lin and Weldon[3], Gore[4]) When the row and column codes

are majority logic decodable, the product code is majority

logic decodable.

3) (Reddy[5]) If either factor (component) code is majority-

logic decodable, then the product code can oe decoded using

the decoders for the factor codes.

All of these procedures have the highly desirable property that

the decoder(s) for the factor codes are used to decode the much longer

product code. However, Method 1 fails to correct many error patterns

of wcight less than or equal to t where

* This research was supported in part by NASA grant NGL-12-O01-046 and
by AFCRL Contract F19628-70-C-0082.
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dld2 - 1
t = d (1)

2

the error-correcting capability of the code. Methods 2 and 3 correct

all patterns of weight t or less and many of higher weight but are

applicable to relatively few product codes.

In this paper we present a decoding procedure for product codes

which corrects all error patterns of weight (d1d2 - 1)/2 or less (as

well as some of higher weight), is applicable to all binary product

codes, and uses the factor-code decoders in a simple way to decode the

product code. The procedure is similar in concept to Reddy's decoding

technique[5] and draws heavily on the results of Reference 6. Because

of the limitations of this latter reference, the present result applies

only to binary codes.

2. The Decoding Procedure

Consider the product of an (n1,kl) row code with minimum Hamming

distance dI and an (n2,k2) column code with distance d2 . Let Ey

denote the ?iumber of bit errors in the yth row. Decoding can be accom-

plished in 2 steps:

1) Decode the yth row word; compute and record F , the number
of changes made in decoding this row, y = 1, 2, ..., n2 .

2) Decode the th column word using Weighted Erasure Decoding[6]

as explained below.

To simplify the presentation we will take d!  to be odd i.e.

d = 2tI + I ; the case of dI even follows directly. The column

decoder operates on a binary-input, (d, + 2)-ary output cha:,hcl. If

F < tl , the digit in the yth row and the vth column, a , will be
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taken to have value LF  if the binary symbol in this position is a 0

and value Ldl+lF if the binary symbol is a 1 If F > tI , the output

symbol is L regardless of the associated binary digit.

The table below assumes that the all-zero word is transmitted. The
yth row originally contains E errurs; the row decoder makes F changes.

Y Y
Of course, if E.y ti , these changes are corrections; if Ey< t1+l,

correction of all errors may or may not occur.

E F Output symbol w-weight of error
'Y YI a e

no. of bit errors no. of changes Associed BiyAsoate Binary
in row y made in row y digit di0 i

0 1 01

0 0 L0  0 0
1 1 1 - 1 1

2 2 L2 2 2

tI  tI L t, t,

tI ti

> t I + 1 > t I + 1 Ltl+ 1  Lti+1 tI + " t I + I"
Zt I + I tI IL t I  t + I

1 t Lt Ltl+2

dI - 2 2 L2 Ld ll  2 dI - 2
ad I  I Ll I l d I - I

d1 0 L0  Ldl+1 0 d1

In Reference 6 the e are restricted to be integers. This is not

strictly necessary but multiplying the e here by a factor of 2 gives

integral weights and leaves the proof unchanged.
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It now remains to show that the column decoder decodes correctly

provided that t or fewer errors occurred in the product code woro.

To prove that this is so, assume that the all-zero code word is trans-
th

mitted and consider the decoding of a particular column, the v

The worst case occurs when the row decoder corrects no errors.

Let e denote the w-weight of the erro:r in the yth digit. Then either

1) The yth row contained no errors, hence no changes were made by

the row decoder and ey 0 , or

2) The yth row contained E errors whereY

E _ t1 + 1

In this latter case,

e Y E (2)

Now since t or fewer bit errors occurred in the product code word

n
2

I E t (3)

Therefore, from Eq. 2,

n2n e < t 
(4)

Yil Y -

but by Theorem I of Reference 6, this is precisely the necessary condition

for correctly decoding the v th column. Therefore all error patterns of

Hamming weight < [(d1d 2 - 1)/2] are correctable.

Example. Consider the product (f two binary codes with minimum Hamming

distance 3. The product code has distance 9 and so can correct any
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error pattern of weight < 4 -- including a pattern of 4 errors which

form a rectangle in the usual 2-dimensional representation of the product

code word. Again assume the all-zero word is sent.

After Step 1 of decoding, all rows except the y, th and y2th have

e = 0 , F = 0 and contain no errors. The other two rows haveY Y

ey = 2 , F = I (the row decoder introduces an error and contain
Y Y

3 binary errors each after the first step.

In Step 2 of decoding, for all columns except VI f V2 and v3

the ylth and y2 th bits are 0 with F = 1 and all other bits are 0 with

F = 0 . Thus for these columns,

n 2

Y e = 2 S ty~l Y

th th th
and correct column decoding results. For the v1  , v2  and v3

th th

columns, the y, and Y2 bits are I with F = I , while all other

bits are 0 with F = 0 . Hence

n 2

Y e = 4y-I Y

and correct decoding results.

In conclusion, it should be remarked that since only the F must

be stored after each row decoding, and since Fy Y< t1*I , the storage

requirements beyond storing the array itseif are mi,?imal. Also since

the complexity of Weighted Erasure DecPdA-ig increases with the number

of output symbols, it makes sense to treat the code with the smaller

minimum distance as the row code.
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Part Five

A Remark on the Minimum Weight Code Words

of a Certain Class of Cyclic Codes

by

T. Kasami

Very l1Ittle is known on tie weight structure of subcodes of the

3rd or nigi, order Reed-Muller code (or supercodes of the (m-4)th or

lower order Reed-Muller code). The following theorem on the minimuin

weight code-words is a strengthenea version of Theorem 11 in (Kasami-

Lin-Peterson, 1968). Let p be a prime. W s(i) denote the sum of the
pP

coefficients of the radix-p s form of i.

Theorem: Let C be a p-ary cyclic code of length pns_ I with

generator polynomial g(X), let 3 be a primitive element of GF(pIs),

dnd let 1 < c < in . If g(ol) 0 for every i such that

0 < i -z 2(p

W pS(i) <

then any code-wora of minimum weight p (m-cs_ I is a scalar

multiple Gf the incidence vector* of an (m-c)-flat through the

origin ir EG(m,pS).

This theorem is proved by showing thit the reciprocal of the

locator polynomial of a code-word of weight p _c• I is an afti.e

polyn iial. For the detail, refer to the procf of Theorem 11 in

(Kasa~mi-Lin-Peterson, 1968). If L in Theorem i- a proper supercode

The cotiponent correspondin to th( origin is deleted.



of the code spanned by the dual of the (rn-c-l)-th order Euclidean

Geometry code over EG(m,ps) and the all one vector, then a vector v
is a miniimum weighit code-word if and only if v is a nonzero scalar

1 ultiple of the incident vector of an (m-c)-flat through the origin

in EG(mr,p 5). The rnirtimuni weight code-words do not span code C.
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Part Six

An Upper Bound on the Minimum
Distance of Dual Codes of Primitive Polynomial Codes

by

T. Kasami and S. Lin

1. Introduction

In this part of the report, an upper bound on the minimum distance

of dual codes of primitive polynomial codes [l] is derived. For several

cases, this upper bound is tight and is equal to the BCH lower bound

for the same class of codes [2,3]. This upper bound can be applied to

establish the exact minimum distance of a subclass of binary primitive

BCH codes.

2. A Brief Review of Polynomial Codes

Let GF(qms) be the extension field of GF(q s) where q is a power

of a prime p. Let a be a primitive element of GF(qms). Then, any non-

zero element cJ in GF(qms) can be expressed as

aJ = a l + a2jal + acj 2 + ... + a mja m l (1)

for 0 < j < qms-I , where a.. is in GF(qS). There is one-to-one

correspondence between aJ and the m-tuple T = (alj, a2j, ... , a

We call T = (aj a2j, ... , a j) the coordinate vector of aJ.
lj'j

Let X= (Xi, X2, ... , X) where Xi is a variable over GF(qS).

Define Qm () as a set of the following polynomials of m variables:

V 1 2 Vm
f(X) : Cvl 2...m VX X2... Xm (2)
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such that

(1) V GF(q s)

(2) O<v i <q for l <i -<m,

(3) V i

(4) f alj, ... , amj ) E GF(q) for O.5.j < qms 1

where (alj, a2j, ... , a m) is the coordinate vector of ctJ.

For each polynomial f(X) in Qm(4), a vector u(f) is defined as

follows:

V(f) = (V 0, , 2, . . . , qms -) (3)

th
where the j component

j = f(alj, 2j' -2 " a m) (4)

for 0 < j , qmS_2 . Thus, v(f) is a vector over GF(q).

Definition[l] A p-th order q-ary polynomial code of length

qmS-l is defined as the following set of vectors:

Cm () = {v(f) I f() F Qm(P)} • (5)

Let QO and R0 be the quotient amd remainder resulting from

dividing (G+l) by (qS-l), i.e.,

p+1 - Qo(qS-l) + R0  (6)
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with 0 4 R 0 < q5-1 Let j be the largest integer such that

q J < q SR (7)

Dividing q-SR 0  by qj ,we obtain

s R 0  =+ rj (8)

where I < aj< q and 0 < j< qj Define the following two integers,

A R- 1 +

Let A 0 and B 0 be two non-negative integers less than or equal toq -

which are defined as follows:

AO =Aqs J (mod qS...) for A qs-l

~AO =A for A = q5 l

B B0 zBqs53  (mod qs-l) for B qs-l (0

BO =B for B = q-l

BO Bq (miod q5 1) for j 0

Now, we construct h0 as follows-

h0= (q5-1) + (qS..l)qs + .. + (qs-l)q 0O-)

+Aq(Q 0-l)s +BqQ~s

= Bq Q s+ (A0±)q 0ols-

-36-



Let Dm (p) be the q-ary dual code of the p-th order polynomial

code Cm (P). It has been shown in Ref. 2 and 3 that the code Dm(u.)

has minimum distance d min at least equal to

h0 + l = Boq 0 + (A0 + l)q(Q )S (12)

i.e.

d. > h+1dmi n 0

3. An Upper Bound on the Minimum Distance of D m(i)

Consider xI x2 . . . xm  with 0 <v i <qS for

l < i < m. It has been proved that

V. VVl 2 im

F 5 xl x2  " " x m  =0 (13)
xicGF(qS)

1 <i <M

unless = v2= vm = qs-l [1]

Now, consider the ji-th order primitive q-ary polynomial code
m()with

'P = Qo(qS-l) + R0  - 1 
(14)

where 0 < < qS - I . Define the following polynomial:

mQol qS. q S- R0-2

p(7) = n (Xi  l 1) { II (X - w)} (15)1=1 {Xm'qo j-I Xm'-o+1 i j

where wj c GF(qs) ., The degree of p(X) is
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(m - Q l)(q s - 1) + qS - RO- 1 (16)

It follows from Eq. (13) that the vector v(p) defined in accordance with

Eq. (3) and Eq. (4) is orthogonal to every vector u in the polynomial code

Cm(ij), i.e., u.v(p) = 0 . Let Tr stand for trace. It is clear that

Trfuav(p)] = 0

Since u is a vector over GF(q), thus

Tr~uav(p)] = u.Tr[u(p)]
= U*v[Tr p(R)]

= 0 .

Since the vector v[Tr p(i)] is over GF(q), therefore it is in the dual code

Dm(IJ) of the polynomial code Cm( ). The weight of v[Tr p(R)] is

X = (R0 + 2)q 
0

It is clear that X is an upper bound on the minimum distance of Dm(iJ).

Theorem 1: The minimum distance dmin of the dual code D m 6) of a

primitive polynomial code C (F) is upper bounded by

x = (R% + 2)qQOs -  . (17)

where Q and R0 are quotient and remainder resulting from dividing

+ 'I by (qS - I).

For several binary cases, this upper bound is tight and is equal to the

lower bound of Eq. (12), i.e.

I h0 + 1.

Case 1: For q=2 and Ro.2S-2, we have

,, QO(2S-l) + 2s. 3
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By (17), the minimum distance dmin of binary code Dm (p) is upper

bounded by

=(2s)2'o

2 (Qo+l)s -1 (18)

It follows from (7), (8), (9) and (10) we obtain

A0 = 2s - 1

B 2s - 1- 1 (19)

Thus, by (11), the minimum distance of Dm (1) is lower bounded by

h0 + I = 2(Qo+l)s - (20)

From (18) and (20), we notice that the upper bound and lower bound are

equal. Therefore, we conclude that for p = Qo(2S-1 ) + 2s-3 the

minimum distance d mi of Dm(ip) is exactly equal to

(Qo+l)s - 1

dmin = 2 (21)

Case 2: For q=2 and RO=2 s-3, we have

p = Qo(2S-l) + 2s-4

By (17), the minimum distance dmin of Dm(I() is upper bounded by

)Qos - 1

= (2s-1)2  (22)
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By (7), (8), (9) and (10), we obtain

A0  = s -1- 1

B = 2
s - l - I

Then, it follows from (11) that

ho~ 0 (2sl), . (23)

From (22) and (23), we notice that the upper bound and the lower bound

are equal. Thus, the code Dm(p) with l, = Qo(2S-l) + 2s-4 has mininium

distance exactly

d min = (2s1)2Qs - 1.

4. The Exdct Minimum Distance of a Class of Primitive BC1! Code.

Let a be a primitive element in GF(2'n). It is known that the

code D m(P) is a subcode of the (ho+l) - BCH code Co whose generator

polynomial has

0 1 2 h0-l
a( I a , a{ , . .. u

as roots [1,4]. From the conclusion which we obtain in Lase 2, we have

the following theorem.

Theorem 2: For do ; ( 2 s- 1 )2
' sS1 for 1 < I < m-1, the do - BCIV .ode

of length 2ms - 1 whose generator polynomial has

0 1 2 d0 -l
ct . , a

as roots has ninimum distance exactly equal to

(2s-i)2k-'
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Due to the symmetry property of primitive BCH codes [5], a direct
consequence of Theorem 2 is the following corollary.

Corollary 2: For d = (2s-l)22s- l - 1 with 1 < k < m-i, the

d-BCH code of length 2ms- 1 whose generator polynomial has

1 2 d-l

as roots has minimum distance exactly equal to

(2s-1)2 . (24)

Corollary, 2 gives us some new information about the exact minimum

distance of a subclass of primitive BCH codes.
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Part Seven

On Shortened Reed-Muller Codes

by

C L. Chen and S. Lin

1. Introduction

The Reed-Muller (RM) codes[l,2] not only provided the first
example of a class of multiple-error-correcting codes, they also have
the important feature of being majority decodable. However, the code
length and the code dimension of these codes are rather sparsely
distributed. Very often this hinders the adaption of these codes in

practical applicdtion.

;4eiss has found a way to ov ercome this situation by puncturing
some digits from the RM codes.[3,4] The code length of the punctured
codes is greater than while the minimum distance of tne punctured codes
is less than the original RM codes. Furthermore, the punctured RM
codes also have the important property of being majority logic decodable.

Another way to increase the n~rriber of codes from the RM codes is
to shorten the RM codes. In this part we shall introduce a way of
shortening the RM codes. The shortened RM codes have the same minimum
distance as thK original codes. They also preserve the feature of being
majority logic decodable.

2. The RM Codes and the Punctured R4 Codes

Let n 2" and v0 be a vector of all l's n-tuple. In addition,

arrange the m n-tuples vI, v2, . ',vm , in rows so that the n

columns formed by tnem are the all possible 2mm-tuples. Finally,
define the vector product of two n-tuples as follows:

u (a,, a,,  .a )
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v = (b, b2,. ., b n)
uOv = (al bit a2 b 2 9 . anbn)

Then the r-th order Reed-Muller code is formed by using as a basis

vo, v1, .. Vm, and all vector products of these vectors r or fewer

at a time. That is, the generator matrix of the code is of the form

v 0

V2

vlv2

G r . (1 )

VmI Vm

v v2v3

Vm-r+lvm- r +2 ,.. v. i

It can be shown that the code has the following specifications:

code length = n = ;?

Dimension =K 1 m)+() + (11)

r i

i=O

minimum distance d -2mr

-44-

IL



The punctured W' odes, or the Weiss codes, are obtained from the

PM codes by puncturing some digits ot the code words. Let us consider

the matrix Gr of Eq. (1) and its submatrix G

vI

V 2

G (2)

The punctured code is obtained by the deletion of thcse ;olumns of G r

which have p+l or more I's in the submatrix G, where p is an integer

greater than r and less than or equal to m.

It can be shown that the punctured code thus obtained has the

following specifications:[3]

code length = np 1 +(m)+(m)+ + (

E (M.) p< 5m

i = O 
"

dimension = = l+ ) +. + (M)

z (T) O<r<p
i=O 1

minimum distance = dp (mr)
=0 i

In the following, we shall briefly describe the decoding procedures
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for both the R codes and the punctured codes.

Let ai i2"i be the information digit corresponding to the

vector vi v.. . . v. in the matrix G . Then a code word of the r-th

order RM code is of the form

b = (bl , b2,. .. , bn)

= a0v0 + Xaili2v i 2v + E ai i. i v i v i vi  + "."
1112 1 12 111213 1 12 13

+ Z a. . r. v i  ..v (3)
Ii2" " r 1 2 i r

where i. s are taken from 1 to m and ij i ik in each of the summation

terms.

The decoding of the RM codes was described in Ref. [2,5]. It

can be shown in general that, for the generator matrix of the r-th

order code, the columns can be grouped into 2m-r disjoint sets of 2
r

each, such that the sum of the columns in each set has a "I" only in

the position corresponding to the row vector v. v  ir  Thus,

there are 2
-r independent determinations that can be formed to solve

a l i2 . Since each error digit can affect only one determination,

ai i can be determined correctly by a majority decision if

2mr1
l 1 or fewer errors occurred. All of the (m) information digits

r

of the form ai...i can be determined by this way.

After the (m) information digits of the form a have been
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determifned, the summation E ai i  v. V, ...v. can be subtracted
S1 2.. "r 1i 12 r

from the received vector. Then the modified received vector can be

treated as if it were coded from an (r-l)-th order code and each

of the (rl) information digits of the form ai1 .ir can be

determined from a majority decision on a set of 2m'r+l independent

determinations. Then the procedure continues until the modified

received vector is treated as if it were coded from a 0-th order code

and a0 is determined.

The procedure for decoding the punctured RM codes is similar to

that for decoding the RM codes. To determine ai i i , there are
1 " r

d independent determinations that can be formed. After all of the
P

(m) information digits of the form ai...ir have been determined by

a majority decision, the sunr!Ettion term E a ili2 irvil v i2" 'vir is

subtracted from the received vector. The modified received vector

can be treated as if it were coded from a punctured (r-l)-th order

RM code. Then the decoding procedure continues in a similar way as

in the RM codes until a0 is determined.

3. The Shortened RM Codes

Consider the submatrix Gs of Gr formed from vO, vI, v2, . .. , v
P

an their vector products taken r or fewer at a time, where p < m.

That is,
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V 0

Vp

Gs V p(4

Vp ~ .. pp < m

Nevt, consider the columns in G of (2) that all have O's in

the last m-p rows. It is clear that these columns form an additive
group. Furthermore, consider the corresponding columns in the matrix

G r' All of the rows except those rows in Gs have O's in these columns

Therefore, if we delete from Gr the submatrix G and the columns that

all have O's in the last m-p columns of G, the rlinimum distancp of

the shortened code will remain the same. Thus, the shortened r-th

order RM code as constructed above has the following parameters:

dimension ks  k- (1+ (P) + (P)+. + (P))

r

code length ns  = n- 2P

= 2 m  2P

minimum distance ds  d = 2 mr
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where p < m, and the convention that (x) = 0 for y > x is used.
y

Notice that the number of parity check digits of the RM code

is equal to n-k, and that of the shortened code is equal to

r
n-k-(2 p _ E ()). Therefore, the number of parity check digits of

i-OI
PG P

p
the shortened codes is reduced by Z (P) while the minimum distance

i=r+l

remains the same.

Recall that there are 2m-r independent determinations that can be

formed to solve ai  . in a code word of the r-th order RM code.

If we delete the submatrix Gs from the matrix G, the columns of G

can still be grouped into 2m-r disjoint sets of 2r each, such that

the sum of the columns in each set has a "I" only in the row

corresponding to nonzero v. v i . v * From the way we shortened
1112 r

the RM codes, it can be seen that the nonzero vector v v2 ir

has zero's at those positions corresponding to the columns we

deleted from G r. Therefore, the columns of the generator matrix of

the shortened code can also be grouped into ? r disjoint sets such

that the sum of the columns in each set has a "I" only in the row

cirresponding to vi v2 .v. . Thus, a ili2 can be determinedc~re1112n t v""'r" 1hu, ..r

by a majority decision on a set of 2m -r independent determinations.

After all the Cm - CP information digits of the form a.. have
r r 11 1r

been determined, the sum E v ilvi2. ..vi a i i2  is subtracted from
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the received vector. Then the modified received vector is treated es

if it were coded from a shortened (r-')-th orier code. By a similar

argument, al the Cm C- I information digits of the formr- r-
ai 0 i r- can be determined by majority decisions. Then the decoding

procedures continue until ap+ 1 is determined. Thus, the shortened

RM codes are majority logic decodable.
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APPENDIX A

SCIENTIFIC REPORT NO. I AFCRL-70-0325
ON MAJOPTTY-LOGIC DECODING FOR THE DUAL OF PRIMITIVE POLYNOMIAL CODES -

TADAO KASAMI, SHU LIN - MAY 20,' 1970

The class of polynomial codes introduced by Kasami et al. as co.-
siderable inherent algebraic and geometric structure. It has I -n
shown that this class of codes and their dual codes contair man im-
portant classes of cyclic codes as subclasses, such as BCH codes, Reed-
Solomon codes, generalized Reed-Muller codes, projectivw geometry 'odes
and Euclidean geometry codcs.

The purpose of this paper is to investigate further properies of
polynomial codes and thei, duals. First, majority-logic decodinc for
the duals of certain riritive polynomial codes is considerkl. Tw-
methods of forming non-r thogonal parity-check sums are pres, nted.
Second, the maximality of Eiclidean geometry codes is proveJ. The roots
of the generator polynomia- of an Euclidean geometry code are specified.

SCIENTIFIC REPORT NO. 2 AFCRL-70-0430
ON THE CONSTRUCTION OF A CLASS OF MAJORITY-LOGIC DECODABLE CODES -
TAO KASAMT, SHU LIN - JUNE 15, 1970

The attractiveness of majority-logic decoding is its simple
implementation. Several classes of majority-logic decidable block codes
have been discovered for the past two decades. In this paper, a method
of constructing a new class of majority-logic decodable block codes is
presented. Each code in this class is formed by combining majority-
logic decodable codes of shorter lengths. A procedure for orthogonalizing
codes of this class is formulated. For each code, a lower bound o,, the
number of correctahle errors with majority-logic decoding is obtained.
An upper bound on the number of orthogonalization steps for decoding each
code is derived. Some majority-logic decodable codes which have more
information digits than the Reed-Muller codes of the same length and the
same minimum distance ar'e found.

Some results presented in this paper are extensions of the r.sults
of Lin and Weldon and Gore on he majority-logic decoding of direct
product cod s.
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Papers for Publication on Work Supported by Project F19628-70-C-0082

T. Kasami and S. Lin, "On Majority-Logic Decodin] for the Duals of
Polynomial Codes", To appear, IEEE Trans. on Information Theory, IT-17,
1971.

T. Kasami and S. Lin, "On the Construction of a Class of Majority-Logic
Decodable Codes," Submitted to IEEE Tr3ns. on Information Theory.
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This final report summarizes research for a one-year project.
Abstracts for the two scientific reports are given, and some new
results are included on reduction of context-free grammars, decoding
binary block codes on Q-ary output channels, a procedure for decoding
binary product codes, on the minimum weight code words ;r a certain
class of cyclic codes, distance property of the dual codes of
polynomial codes and on shortened Reed-Muller codes.
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